ARMY RESEARCH LABORATORY

Distributed Interactive Simulation (DIS)
Network Manager

Kenneth G. Smith

o

SRR R

June 1995

9950830 078

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTI@ QUALITY INSPECTED 9

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers’ names in this report does not constitute
endorsement of any commercial product.

REPORT DOCUMENTATION PAGE | ONB e 07040188

MMd"r’mhhlnhgm;ln and g g and] garding this burden or any other aspect of this
of Including suggestions for reducing this burden, to Washing q ces, Dire for Op and Rep 1218
Davis Suhe 1 Artin VA and to the Office of Mana t and Bud: Reduction 704-0188), Washin DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1995 Summary, 1 - 31 Dec 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Distributed Interactive Simulation (DIS) Network Manager PR: 1L162618AHS0
6. AUTHOR(S)
Kenneth G. Smith
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Research Laboratory
ATTN: AMSRL-SC-SS

Aberdeen Proving Ground, MD 21005-5067 TR-780
.~ ey YAy gy ——
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS{ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Current Department of Defense simulation research centers on real-time, interactive simulation of realistic,
complex, "virtual worlds" represent the coalescence of a diverse set of virtual, constructive, and live simulations
occurring at various locations throughout the world. This effort is collectively known as Distributed Interactive
Simulation (DIS). Its purpose is to allow dissimilar autonomous simulation nodes to interoperate in real-time,
interactive, distributed simulations. Inter-node communication is achieved by exchanging DIS protocol data units
(PDU). To facilitate the development of simulation application programs that use the DIS protocol, the Simulation
Methodology Branch of the Advanced Computational and Informational Sciences Directorate, U.S. Army Research
Laboratory (ARL), developed a set of DIS software management programs, collectively referred to as the DIS
Network Manager. It employs a client-server based architecture, providing a library of software routines to client
application programs for creating, handling, sending, and receiving DIS protocol data units.

tt———
14. SUBJECT TERMS 15. NUMBER OF PAGES

distributed interactive simulation (DIS), protocol data units (PDU) 28

16. PRICE CODE

[717. SECURITY CLASSIFICATION] 8. RITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. UMITA ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
R a0 S R R e

INTENTIONALLY LEFT BLANK.

il

PREFACE

Current Department of Defense simulation research centers on real-time, interactive sim-
ulation of realistic, complex, “virtual worlds” represent the coalescence of a diverse set of
virtual, constructive, and live simulations occurring at various locations throughout the world.
This effort is collectively known as Distributed Interactive Simulation (DIS). Its purpose is to
allow dissimilar autonomous simulation nodes to interoperate in real-time, interactive, dis-
tributed simulations. Inter-node communication is achieved by exchanging DIS protocol data
units (PDU). To facilitate the development of simulation application programs that use the
DIS protocol, the Simulation Methodology Branch of the Advanced Computational and Infor-
mational Sciences Directorate, U.S. Army Research Laboratory (ARL), developed a set of
DIS software management programs, collectively referred to as the DIS Network Manager.

The author wishes to acknowledge the Naval Post Graduate school and Dr. David Pratt for
providing the software from which an early version of the DIS Network Manager was devel-
oped. Though most of the software has been rewritten, the User Datagram Protocol (UDP)
networking code is still largely unchanged. Software developers that have also contributed in-
clude Holly Ingham and Geoffrey Sauerborn, both from the ARL.

Ascession For E
B2IS GRAGI r.é
DTIC TAR 0
Upnannouwced |

izt

INTENTIONALLY LEFT BLANK.

v

2.1
22
2.3
24

TABLE OF CONTENTS

..

...

DIS Manager . .o vvoeee et ittt ittt ettt s

DIS Library

..

Other Features and Utility Programs iiiiinaa..

FUTURE D

EVELOPMENTS. i it

CONCLUSION .. i i i ettt et ciaaeeaeaens

REFERENCES i i e eieaeeans

APPENDIX
APPENDIX

C:DIS MGRMANUALPAGEccoiviiiin...
D:LIBDISMANUALPAGE........ ...,

LISTOFACRONYMS, i

DISTRIBUTION LISTo it ie e

INTENTIONALLY LEFT BLANK.

vi

Fi
1.

e

LIST OF FIGURES

dis_mgr Network Connections

......................................

vil

INTENTIONALLY LEFT BLANK.

viii

1. INTRODUCTION

Current Department of Defense simulation research centers on real-time, interactive sim-
ulation of realistic, complex, “virtual worlds” represent the coalescence of a diverse set of
virtual, constructive, and live simulations occurring at various locations throughout the world.
This effort is collectively known as Distributed Interactive Simulation (DIS). Its purpose is to
allow dissimilar autonomous simulation nodes to interoperate in real—time, interactive, dis-
tributed simulations. Each simulation node maintains and conveys the state of one or more
simulation entities. Simulation nodes communicate simulation entity states over both local
and wide area networks by exchanging standard DIS protocol data units (PDUs).

The Simulation Methodology Branch (SMB) of the Advanced Computational and Infor-
mational Sciences Directorate (ACISD), U.S. Army Research Laboratory (ARL), developed
aset of DIS software management programs, collectively referred to as the DIS Network Man-
ager. These programs are designed to facilitate the development of software application pro-
grams that use the DIS protocol and to explore advancing the DIS protocol itself through the
addition of new PDUs and alternate PDU management techniques.

2. GENERAL

The DIS Network Manager provides application programs with a programmatic interface
to a DIS network. In this report, a DIS network is defined to be any local area network (LAN)
on which DIS application programs! are operating. The DIS Network Manager comprises two
functional components. The first, called dis_mgr, establishes and manages a connection to a
DIS network. The second component, called libdis, is a software library that works in conjunc-
tion with the dis_mgr to facilitate constructing, sending, receiving, and interpreting DIS PDUs.

2.1 DIS

DIS operates under the notion that a diverse and large number of simulated entities may
participate and interact in real time during a single simulation exercise. Successful interaction
depends on each simulated entity’s physical state and actions being communicated to all other
simulated entities in a timely, succinct, and consistent fashion. DIS provides a protocol that
describes the philosophy and requisite information needed to simulate entities in such an envi-
ronment.

Successful DIS simulation exercises are dependent in part on the unique identification of
each simulated entity. Simulated entities in DIS are uniquely identified by site, host, and entity
numbers. Each physical site participating in an exercise is identified by a unique number. Fur-
ther, each computer host at a site is identified by a unique number. Lastly, each entity that is
being simulated by a computer host is assigned a number unique to that host.

Communication of entity states and actions is accomplished by using predefined DIS
PDUs. PDUs convey the current state of a simulated entity or a simulation event involving one
or more entities, such as a collision. Within the PDU, details concerning the state or event are
specified via enumeration and bit-encoded values.

1 The term “DIS applications”or “DIS application programs” refers to programs that use the DIS commu-
nications protocol.

DIS exercises are conducted over both local and wide area networks. They consist of simu-
lation hosts running applications that simulate one or more entities. Each host is responsible
for transmitting the absolute truth about the entity(ies) it is simulating to all other hosts in an
exercise. It is similarly responsible for determining how its simulated entity(ies) are perceived
and affected by incoming PDUs (DIS 1994).

2.2 DIS Manager

The dis_mgr is a software program that provides network communications services for ap-
plication programs. It uses user datagram protocol (UDP) broadcast to transmit outgoing
PDUs over the DIS network to other simulation hosts. It listens to the network and receives
all incoming PDUs that other simulation hosts have transmitted.

The dis_mgr can communicate with other dis_mgrs or directly with other DIS applications
that are not designed to use a dis_mgr. For DIS applications to exchange PDUs with other ap-
plications, the only networking requirement is that all applications transmit and receive PDUs
over the same UDP ports. While the dis_mgr uses default UDP ports for sending and receiving
PDUs, the port numbers can be changed through command-line arguments. This allows for
the concurrent development and testing of multiple DIS applications on the same LAN with-
out interference from other DIS applications or exercises.

The DIS Network Manager departs from the notion of a single host computer running a
single simulation application. Rather, it is designed to permit multiple simulation applications
to run from a single host computer. Due to the inherent nature of UDP to only permit a single
communications channel per host computer, a client-server architecture is employed by the
dis_mgr to enable multiple applications to operate on, and transmit their PDUs from, a single

host computer.

The client-server protocol implemented between the dis_mgr and application programs
uses UNIX transport control protocol (TCP) internet protocol (IP) to exchange information.
Client programs connect to the dis_mgr to use its send and receive services. The dis_mgr estab-
lishes a UDP connection to the DIS network. It takes outgoing PDUs from its client programs
and transmits them over the DIS network. Incoming PDUs that the dis_mgr receives from the
DIS network are passed back to its application programs (see Figure 1).

An interesting feature of this architecture is that client programs who send PDUs will in
turn receive them from the dis_mgr as incoming PDUs. This can facilitate an application’s
processing of entities as the DIS protocol requires that applications maintain two states for
each entity in their responsibility: 1) the high fidelity absolute state of an entity as known only
by the application, and 2) the “ground truth” state of an entity as it is presented to and repre-
sented by all applications participating in the simulation exercise. Receipt of its own PDUs en-
ables an application to more easily maintain the “ground truth” state of its own entities.

Default configuration of the dis_mgr permits from one to four client programs to utilize the
services of a single dis_mgr. It can be configured through a command-line argument to handle
up to eight clients. This number was arbitrarily chosen to impose a practical limit on the num-
ber of clients for any one dis_mgr. A relatively small number was chosen because of the DIS
entity identification scheme that requires entities be assigned a unique number between
0—65,535 for each simulation host. If more than one simulation application is running on a
single host, then entity id numbers must be unique across all applications on that host. The DIS
Network Manager ensures such uniqueness by assigning a range of entity id numbers to each

LI

- DIS Network |
I
. v
\‘ \
O Simulation Host Y 1\ Appl3:
f Outgoing PDU \ == Appld;
@ Incoming PDU “‘
@) Simulation Application y
Figure 1. dis_mgr Network Connections
application will be assigned the range 0—16,383 to use for entity id numbers. The second ap-
plication will use numbers in the range 16,384—32,767, etc.
Another service offered by the dis_mgr isPDU filtering. PDUs are filtered at the PDU lev-
el. That is, they are filtered by PDU type. A client application program can instruct the dis_mgr
to not send it any PDUs of a specified type, such as FirePDU or ServiceRequestPDU. Thus,
applications will only receive those types of PDUs that they specify. This prevents an applica-
tion program from having to process PDUs that it can not or does not want to handle.
Lastly, the dis_mgr queues incoming PDUs for each client application program until the
client requests them. The philosophy of the DIS Network Manager is that client application
programs will process PDUs as fast as they are able. When applications are ready to receive
the next incoming PDU, they request it from the dis_mgr. This scheme simplifies the design
of applications since they do not have to be developed to handle incoming PDUs asynchro-
nously.
. 2.3 DIS Library
The second component of the DIS Network Manager, libdis, is a library, or collection of
- software routines, for use by application programs utilizing the dis_mgr. It provides a consis-
tent, easy-to—use means of creating, interpreting, sending, and receiving PDUs. It also handles
the TCP/IP based client-server communication between application programs and the
dis_mgr.

Application programs using the services of the dis_mgr first connect to it, via the library
routine called dis_open(). This routine opens a TCP/IP-based connection to the dis_mgr
through which all future communication will occur. In response, the dis_mgr sends a message
back to the application program containing the protocol version, exercise identification num-
ber, and range of available entity identification numbers for use by that application when

creating entities.

For filtering PDUs, two routines are available to application programs: dis_register_pdu()
and dis_ignore_pdu(). When application programs first connect to the dis_mgr, they default
to receive no incoming PDUs from the dis_mgr. They must register with the dis_mgr those
PDUs that they wish to receive. This is done by listing the desired PDU types via the dis_regis-
ter_pdu() routine. This ensures that application programs will not receive unexpected PDU
types. The dis_ignore_pdu() routine allows application programs to stop receiving PDU types
that were previously registered for receipt.

The library provides a set of routines whose names take the form of get_PDUtypePDU,
where PDUtype is the name of a type of PDU. For example, to create an EntityState PDU the
routine get_EntityStatePDU() would be used. These routines create C data structures that re-
flect the fields in the PDU. The “protocol header” field of the newly created PDU is filled by
the libdis PDU creation routines. It is the application programs responsibility to fill all of the
remaining fields in a PDU with appropriate values.

Application programs send PDUs via the dis_send() routine. This routine takes as its argu-
ment a pointer to a C—structured PDU as created using one of the get_PDUtypePDU() rou-
tines. These can be complex structures containing many smaller structures and even linked lists
of other structures. The dis_send() library routine compresses the C—structured PDU into a
single contiguous string of bytes and fills in the “length” field of the PDU protocol header be-
fore sending the PDU to the dis_mgr for transmission over the DIS network.

A complementary routine to dis_send() is dis_read(). This routine is used by application
programs to receive the next incoming PDU from the dis_mgr. PDUs from the dis_mgr are re-
ceived as a single contiguous string of bytes. dis_read() converts those bytes into an appropri-
ate C-structured PDU for easier use by the application program. Additionally, dis_read() re-
turns an integer that identifies the type of PDU that was received.

To assist in debugging DIS application programs, libdis provides the capability to print
PDUs. The print routines, print_PDUtype(), print C-structured PDUs in ASCII and identify
the respective data type of each PDU field. The DIS standards specify the data type of each
field in a PDU by length and type. For example, the “protocol version” field of PDUs is defined
to be an 8-bit unsigned integer. Appendix A contains output generated by the
print_EntityState() routine for a sample EntityState PDU.

2.4 Other Features and Utility Programs

A sample client application program was created that illustrates a DIS application program
designed to use the DIS Network Manager. This program demonstrates the rudiments of an
application program connecting to the dis_mgr, registering to receive PDUS, creating a PDU,
sending the PDU, and printing any incoming PDUs.

A second, more sophisticated application program was created that provides an X/Motif-
based graphical user interface for creating sample PDUs that can be sent out over the DIS net-
work. This program, called clientX, offers a pull-down menu of all of the available PDU types

that a user may send along with a popup window for setting the number of PDUs to send. A
“Send” button is provided that, when pushed, will create a sample PDU for each type and num-
ber of selected PDUs in the menu and send them to the dis_mgr for transmission across the
DIS network. More than one type of PDU can be selected to be sent at a time.

Functions are provided in the libdis library to enable the logging of PDUs. PDUs can be
logged with an optional time-stamped header, by direction (incoming, outgoing, or both), and
in one of three formats: ASCII, binary, or ASCII-binary. The optional header precedes each
logged PDU in a log file and contains a time stamp, the PDU type, and “INCOMING” or
“OUTGOING?” designation to indicate whether the logged PDU was sent and/or received by
the the logging program. ASCII formatted PDUs utilize the print_PDUltype() routines in log-
ging PDUs to a file. Binary formatted PDUs are logged in straight binary. The ASCII—-binary
format logs PDUs by representing a PDU’s binary format using ASCII “ones” and “zeros.”
This presents the actual binary bit stream for a PDU in a human readable form. It requires
considerably less space than straight ASCII and is useful when debugging PDUs to examine
the actual bit values of a PDU. Appendix B contains sample PDUs logged in both the straight
ASCII format and ASCII—binary format.

Both the dis_mgr and clientX programs are capable of logging PDUs. Logging via the
dis_mgr is enabled through command line arguments. The clientX program has a popup win-
dow through which logging can be turned on or off and the various combinations of header,
PDU direction, and format can be specified. Using the dis_mgr to log PDUs allows logging
of all PDUs on a DIS network or simply those PDUs that originate from the dis_mgr’s clients.
Logging PDUs at the client program level allows for the logging of all PDUs sent and/or re-
ceived by a particular DIS application.

Complementing the logging capability is a set of utility programs for converting between
the straight binary and the ASCII—binary log formats. Additionally, a program is provided to
replay logged PDUs. This program plays back time-stamped binary formatted log files. It re-
plays the PDUs at the original rate at which they were sent.

3. FUTURE DEVELOPMENTS

One of the merits of the in—-house developed DIS Network Manager is the control over its
development and operation. It readily supports the development and testing of new DIS
PDUs. Similarly, alternative schemes for exploring more efficient use of the DIS network can
be tested. Filtering PDUs at a level above application programs alleviates the application pro-
grams of this burden, freeing them to do more processing of their designed tasks.

A more sophisticated PDU filtering scheme is under consideration as a future enhance-
ment to the DIS Network Manager. Currently, PDUs are filtered by type. Other schemes could
include filtering based on the source, time, and entity location. In an experiment involving
“live” entities, it may be desirable for other live entities to ignore their PDUs if they are redun-
dant. For instance, in an exercise involving live and simulated tanks, the real tanks don’t need
to receive EntityState PDUSs about other real tanks that they can physically see. PDUs could
be filtered if they are outdated due to slow or congested networks. PDUSs could also be filtered
based on their relative impact on the receiving entity. In other words, if an incoming PDU will
have no immediate or future impact on the receiving entity then it can be filtered out by the
dis_mgr.

Another enhancement is a more transparent method of generating entity identification
numbers. Entity identification numbers are supposed to be unique within each simulation
host. Since thedis_mgr acts as a simulation host, but comprises potentially more than one simu-
lation application, all entity identification numbers should be generated by the dis_mgr, not
each of its client application programs as is currently done.

Future versions of the DIS Network Manager will use an interrupt driven scheme to notify
client application programs of the arrival of PDUs. This will alleviate the application programs
from having to continually poll the dis_mgr for incoming PDUs. The libdis library will generate
a separate process for each client program that will notify the client program when a PDU has
arrived. In this way, client programs will not need to regularly and frequently call dis_read()
to check for incoming PDUs. Instead, they will only need to call it when they have been sig-
naled that a PDU is pending.

4. CONCLUSION

The DIS Network Manager was developed to facilitate the creation of applications pro-
grams designed to operate in a DIS environment. It provides a DIS network level interface
through which application programs can easily send and receive DIS PDUs. Built-in routines
give application programs easy control over PDU creation and flow control. The DIS Network
Manager is flexible and can be easily expanded to support experimentation with new and al-
tered PDU types and network communication control. Enhancements are currently underway
to provide improved logging, playback, analysis, and interactive generation of PDUs.

5. REFERENCES

DIS Steering Committee “The DIS Vision: A Map to the Future of Distributed Simulation.”
IST—SP-94-01, Institute for Simulation and Training, Orlando, FL, May 1994.

INTENTIONALLY LEFT BLANK.

APPENDIX A:
SAMPLE OUTPUT

INTENTIONALLY LEFT BLANK.

10

Sample Output from print_EntityStatePDU() Routine

The libdis library contains simple debugging routines that print DIS PDUs in ASCII. Below
is an example of the output for an EntityStatePDU. The values for the fields in the
EntityStatePDU may not be correct or valid as this is just sample data used to test the routine.
The version of the DIS protocol being used is 2.0.2.

—>Entity State PDU:
{

protocol_header = {
protocol_version = 2 (8 bit unsigned int)
exercise_ident = 1 (8 bit unsigned int)
pdutype = 1 (8 bit enum)
: length = 0 (8 bit unsigned int)
%

entity_id = {
site = 37 (16 bit unsigned int)
host = 63 (16 bit unsigned int)
entity_id = 1 (16 bit unsigned int)

%

force_id = 2 (8 bit enum)

entity_type = {
entity_kind = 0 (8 bit enum)
domain = 0 (8 bit enum)
country = 0 (16 bit enum)
category = 0 (8 bit enum)
subcategory = 0 (8 bit enum)
specific = 4 (8 bit enum)
extra =0 (8 bit enum)

¥

alt_entity_type = {
entity_kind = 0 (8 bit enum)
domain = 0 (8 bit enum)
country = 0 (16 bit enum)
category = 0 (8 bit enum)
subcategory = 0 (8 bit enum)
specific = O (8 bit enum)
extra = 0 (8 bit enum)
%
time_stamp =0 (32 bit unsigned int)
entity_location = {
x = 1.000000 (64 bit float)
y = 2.000000 (64 bit float)
z = 3.000000 (64 bit float)
%
entity_linear_velocity = {
x = 0.000000 (32 bit float)

11

y = 0.000000 (32 bit float)
z = 0.000000 (32 bit float)
%
entity_orientation = {
psi = 0.000000 (32 bit float)
theta = 0.000000 (32 bit float)
phi = 0.000000 (32 bit float)
%
dead_reckon_params = {
algorithm = 0 (8 bit enum)
linear_accel = {
x = 0.000000 (32 bit float)
y = 0.000000 (32 bit float)
z = 0.000000 (32 bit float)
h
angular_velocity = {
x = 0.000000 (32 bit float)
y = 0.000000 (32 bit float)
z = 0.000000 (32 bit float)
%
%
entity_appearance = 0 (32 bit enum)
entity_marking = {
char_set = 0x0 (8 bit enum)
char_strings[11] (8 bit unsigned int) = 00000000000
%
capabilities = 0x0 (32 bin boolean)
num_articulate_params = 2 (8 bit unsigned int)
articulat_pa.rams_head ={
[0] =
change = 10 (16 bit unsigned int)
id_attached_to = 11 (16 bit unsigned int)
parameter_type = 12 (32 bit enum)
parameter_value[8] (8 bit unsigned int) = 31 2552452000 4 24 144
%
[1]=A
change = 20 (16 bit unsigned int)
id_attached_to = 21 (16 bit unsigned int)
parameter_type = 22 (32 bit enum)
parameter_value[8] (8 bit unsigned int) = 32 255 245 200 239 255 245 128

12

APPENDIX B:
SAMPLE PDU LOG FORMATS

13

INTENTIONALLY LEFT BLANK.

14

Sample PDU Log Formats

The DIS Network Manager is capable of logging PDUs in one of several formats: straight
binary, straight ASCII, or ASCII-binary. Additionally, each PDU may be tagged with a time-
stamped header that shows the length of the PDU in bytes, the time it was sent or received,
and whether it was incoming or outgoing. Incoming only, outgoing only, or both incoming and
outgoing PDUs may be logged.

Below is a sample of an EntityStatePDU logged in two different formats: straight ASCII
and ASCII-binary. The values for the fields in the EntityStatePDU may not be correct or valid
as this is just sample data used in generating a PDU that could be logged.

Straight ASCII Log Format

Below is an EntityStatePDU logged in the straight ASCII format with a header. The ver-
sion of the DIS protocol being used is 2.0.3.

176 Thu Oct 20 08:07:10.757701 INCOMING

Entity State PDU:

{

protocol_header = {

protocol_version = 3 (8 bit unsigned int)
exercise_ident = 1 (8 bit unsigned int)
pdutype = 1 (8 bit enum)
length = 176 (8 bit unsigned int)
time_stamp = 0 (8 bit unsigned int)

%

entity_id = {
site = 37 (16 bit unsigned int)
host = 53 (16 bit unsigned int)
entity_id = 1 (16 bit unsigned int)

%

force_id = 2 (8 bit enum)

entity_type = {
entity_kind = 0 (8 bit enum)
domain = O (8 bit enum)
country = 0 (16 bit enum)
category = 0 (8 bit enum)
subcategory = 0 (8 bit enum)
specific = 4 (8 bit enum)
extra =0 (8 bit enum)

%

alt_entity_type = {
entity_kind = 0 (8 bit enum)
domain = 0 (8 bit enum)
country = 0 (16 bit enum)
category = 0 (8 bit enum)
subcategory = 0 (8 bit enum)
specific = 0 (8 bit enum)

15

extra = 0 (8 bit enum)
o
entity_location = {
x = 1.000000 (64 bit float)
y = 2.000000 (64 bit float)
z = 3.000000 (64 bit float)
%
entity_linear_velocity = {
x = 0.000000 (32 bit float)
y = 0.000000 (32 bit float)
z = 0.000000 (32 bit float)
¥
entity_orientation = {
psi = 0.000000 (32 bit float)
theta = 0.000000 (32 bit float)
phi = 0.000000 (32 bit float)
%
dead_reckon_params = {
algorithm = 0 (8 bit enum)
linear_accel = {
x = 0.000000 (32 bit float)
y = 0.000000 (32 bit float)
z = 0.000000 (32 bit float)
¥
angular_velocity = {
x = 0.000000 (32 bit float)
y = 0.000000 (32 bit float)
z = 0.000000 (32 bit float)
J
¥
entity_appearance = 0 (32 bit enum)
entity_marking = {
char_set = 0x0 (8 bit enum)
char_strings[11] (8 bit unsigned int)= 00000000000
%
capabilities = 0x0 (32 bin boolean)
num_articulate_params = 2 (8 bit unsigned int)
articulat_params_head = {

[0]={

change = 10 (16 bit unsigned int)

id_attached_to = 11 (16 bit unsigned int)

parameter_type = 12 (32 bit enum)

parameter_value[8] (8 bit unsigned int) = 31000000128
%
[11=A

change = 20 (16 bit unsigned int)

16

id_attached_to = 21 (16 bit unsigned int)
parameter_type = 22 (32 bit enum)
parameter_value[8] (8 bit unsigned int) = 321028 161 43 32

};v
}
ASCII-Binary Log Format

Below is the same EntityStatePDU logged in the ASCII-binary format with a header. The
version of the DIS protocol being used is 2.0.3. This format prints each bit of the PDU as an
ASCII one, “1,” or zero, “0.”

176 Thu Oct 20 08:07:59.037769 INCOMING
0000001100000001000000010010110000000000000000
00000000000000100101000000000011010100000000000000010000001000000010000000000000000000000000
000000000000000000000000000001000000000000000000000000000000000000060000000000000000000000000
000000000000000000000000000000006000000000000000000000000000000000600000600000000000000000000
000000000000000000111111111100010000000000
000100000000001006000000000000000000000000
00000000000000000000000000000000000000600
000000000000000000000000000006000
00
006000000000000
00060000000000000000000
00
0010100000000000001011000000000000
00000000000000001100600011111001000000000000000
00010100000000000001010100000000000000000000000000010110001000000000000100000000000111000001
0000000000010010101100100000

17

INTENTIONALLY LEFT BLANK.

18

APPENDIX C:
DIS_MGR MANUAL PAGE

19

INTENTIONALLY LEFT BLANK.

20

DIS_MGR(1) DIS_MGR(1)
NAME

dis_mgr — facility for sending and receiving Distributed Interactive Simulation (DIS) pro-
tocol data units (PDU)

SYNOPSIS

dis_megr [-v] [-n network_interface] [-c num_clients] [-r recv -s send] [- filename [-a] -b]
|-ab] [-i | -in | -incoming] [-o | -out | -outgoing] [-h | -hn] [-ap | -append] [-over | -over-
write]

DESCRIPTION

dis_megr is a program that provides network communication services to application pro-
grams that wish to send and receive DIS PDUs across a network. It uses TCP/UDP for ex-
changing PDUs on the network. It acts as a server to client application programs maintain-
ing a TCP/IP based connection over which incoming and outgoing PDUs are passed
between the dis_mgr and client programs.

The purpose of the dis_mgr is to provide a common service to DIS application programs.
That service is to establish and maintain network connections through which DIS PDUs
can be sent to and received from other DIS applications. The dis_mgr alleviates applica-
tion programs from the burden of having to establish and maintain such a network connec-
tion themselves. Application programs wishing to use this facility must include the dis_mgr
library, libdis. This library contains the function calls through which the services of the
dis_mgr are accessed.

OPTIONS

-v Verbose mode. This option causes the dis_mgr to detail its actions
through standard output.

-n net_iface net_iface specifies the name of the ethernet connection over
which PDUs will be broadcast and received, e.g., le0.

-c num_clients num_clients indicates the maximum number of client application
programs that can use the services of the dis_mgr at any one time.
Default is 4.

-I recv -s send recv and send are used to specify alternate UDP port numbers
that the dis_mgr will use to send and receive DIS PDUs over the
network. This is useful if more than one independent DIS exer-
cise is being conducted simultaneously on the same network.

-1 filename Turns on the logger facility within the dis_mgr. Logged PDUs are
written to the file called filename.

-a|-b|-ab Format of logfile. -a — PDUs are logged in straight ASCII. -b —
PDUs are logged in binary. -ab — PDUs are logged in ASCII-
binary, that is, the binary representation of each PDU is logged
in the file as a series of ASCII one’s (“1”) and zeros (“0”). This
mode is to facilitate debugging when it is necessary to see the ac-
tual bit stream of a PDU. Binary is default format when -1 option
is specified.

21

DIS_MGR(1) DIS_MGR(1)

-i | -in | -incoming For logging PDUs, this option indicates that only incoming PDUs
are to be logged. On by default when -1 option is specified.

-0 | -out | -outgoing Forlogging PDUs, this option indicates that only outgoing PDUs
are to be logged. On by default when -1 option is specified.

-h | -hn PDUs can be logged with a header detailing the time, length, and

direction (incoming or outgoing) of the PDU. -h (the default)
turns logging with headers on and -hn turns it off.

-ap | -append Indicates that logged PDUs should be appended to the logfile.
-over | -overwrite Indicates that logged PDUs should overwrite anything previously
existing in the logfile.
SEE ALSO
libdis(1).

22

APPENDIX D:
LIBDIS MANUAL PAGE

23

INTENTIONALLY LEFT BLANK.

24

libdis(1) libdis(1)
NAME
libdis — software library of C routines for interfacing to the Distributed Interactive Simula-
tion (DIS) Network Manager program, dis_mgr.
SYNOPSIS

#include <dis_lib.h> -located in src/H under the source directory of the DIS Network
Manager distribution.

int dis_open(char * host)

int dis_close(void)

int dis_register_pdu(char * pdu_list)

int dis_ignore_pdu(char * pdu_list)

int dis_send(char * pdu)

int dis_read(char ** pdu)

pdu_type * get_PduTypePDU()

void free_PduTypePDU(pdu_type * pdu)

char * print_PduType(pdu_type * pdu)

int NEW_ENTITY_ID(void)

int my_pdu(char * pdu)
DESCRIPTION

These routines constitute the DIS Network Manager library libdis. libdis is a collection of
C routines that implement a TCP/IP based communication interface between an applica-
tion program and the dis_mgr program. The purpose is to facilitate the exchange of DIS
protocol data units (PDU) with other DIS application programs on the network. (See
dis_mgr(1).)

dis_open establishes a TCP/IP based network connection between an application pro-
gram, hereafter referred to as client, and a dis_mgr. host is an ASCII character string for
the standard network node hostname of the computer on which dis_mgr is running. This
routine must be used by a client before any other libdis routines. If successful, it returns
a value of TRUE (1), otherwise FALSE (0) is returned. dis_close closes or terminates a
connection between a client and the dis_magr.

dis_register_pdu is used by clients to tell the dis_mgr which type of PDUs it wishes to have
sent to it. Conversely, dis_ignore_pdu is used to specify which types of PDUs are not to be
sent to the client. For both of these routines pdu_list is a white space separated list of PDU
types (by number). For example, “1 2 5.” The PDU types by number are listed in the DIS
header file “dis_lib.h.” Clients can use these two routines to control which types of incom-
ing PDUs the dis_mgr will send to it. This enables clients to only have to handle PDUs that
it wants to process. dis_register_pdu and dis_ignore_pdu return TRUE (1) if successful
and DL_BAD NETCONN (-2)if a dis_mgr connection has not been established or does
not exist for some reason.

25

libdis(1) libdis(1)

dis_send is a routine that clients use to pass a PDU to the dis_mgr for transmission across
the network to all other listening DIS applications. The argument, pdu, is a pointer toa C
data structure that describes the PDU. This pointer must be typecast as a (char *) before
being used in dis_send. The “dis_lib.h” header file contains C data structures for every type
of PDU that fully correspond to the PDU definitions as described in the proposed IEEE
Standard Draft: Standard for Information Technology - Protocols for Distributed Interactive
Simulation Applications, Version 2.0 Drafts 2 and 3, Institute for Simulation and Training,
Orlando, FL. dis_send returns DL_BAD_NETCONN (—2) if there is not a good network
connection to the dis_mgr. DL_BAD_PDU (—1) is returned if an unrecognized PDU type
is sent or if the PDU structure could not be converted into a binary stream for some reason.
If successful, dis_send returns TRUE (1).

dis_read is a routine used by clients to receive the next incoming PDU that has been for-
warded to it by the dis_mgr. The argument, pdu, is to be the address of a pointer so that
dis_read can set it to point to the place in memory where the next incoming PDU resides.
dis_read returns an integer that corresponds to the incoming PDU type by number (as
listed in “dis _lib.h”), DL_NO_DATA (0) indicating that there is no PDU, or
DL_BAD_NETCONN (-2) if the network connection does not exist or is bad. dis_read
operates on the principle that clients will request the next incoming PDU from the dis_megr,
hence dis_read should be used in the main loop of the client program and called as fre-
quently as possible.

A set of routines of the form get_PduTypePDU exist that return a pointer to a dynamically
allocated PDU data structure suitable for use by the client program. In this structure, the
site and host fields are initialized to their correct values by the get_PduTypePDU routine.
In actual use, pdu_type should be replaced with the name of a valid PDU type. For example,
to dynamically allocate an Entity State PDU structure, use get_EntityStatePDU. A corre-
sponding set of routines of the form free_PduTypePDU exist for freeing dynamically allo-
cated memory obtained via the get_PduTypePDU routines.

Similarly, a set of routines of the form print_PduType exist for printing the contents of a
PDU. pdu is a pointer to the C data structure formatted PDU that is to be printed. These
routines return a pointer to a new string containing the contents of pdu suitable for use with
any of the C string(3C) functions. The returned string must be used or copied before a
successive call to the same print_PduType routine.

NEW_ENTITY_ID is a routine that returns the next available entity number for use in the
Entity Identification field of PDUs. It is to be used every time a new entity is created by
a client. This function ensures unique entity ID numbers among all clients of a particular
dis_mgr. my_pdu takes a pointer to a PDU data structure, pdu, cast as a (char *) and deter-
mines if it is a PDU that originated from the client using this routine. If so, it returns TRUE

(1), otherwise FALSE (0) is returned.
SEE ALSO
dis_mgr(1).

26

ACISD

DIS

GUI

ID

LAN
PDU
SMB
TCP/IP
TCP/UDP

LIST OF ACRONYMS
Advanced Computational and Informational Sciences Directorate
U.S. Army Research Laboratory
Distributed Interactive Simulation
Graphical User Interface
Identification
Local Area Network
Protocol Data Unit
Simulation Methodology Branch
Transport Control Protocol/Internet Protocol
Transport Control Protocol/User Datagram Protocol

27

INTENTIONALLY LEFT BLANK.

28

NO. OF
COPIES

ORGANIZATION

ADMINISTRATOR

ATTN DTIC DDA

DEFENSE TECHNICAL INFO CTR
CAMERON STATION
ALEXANDRIA VA 22304-6145

DIRECTOR

ATTN AMSRL OP SD TA
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR

ATTN AMSRL OP SD TL
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR

ATTN AMSRL OP SD TP
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIR USARL
ATTN AMSRL OP AP L (305)

29

NO. OF

COPIES ORGANIZATION

1

OFFICE OF THE ASSISTANT SECRETARY
RESEARCH DEV AND ACQUISITION
ATTN GEORGE T SINGLEY I

103 ARMY PENTAGON

WASHINGTON DC 20310-0103

US ARMY STRICOM PM DIS

ATTN AMSTI CSS

CENTRAL FLORIDA RESEARCH PARK
12350 RESEARCH PKWY

ORLANDO FL 32826-3276

COMMANDER

ATIN ATZL CDB

COL PATRICK LAMAR

415 SHERMAN AVE

FT LVNTHWRTH KS 66027-1344

COMMANDER

ATIN ATCL B

COMBAT SVC SUPPORT BATTLE LAB
CASCOM

FT LEE VA 23801

COMMANDER

ATIN ATSF CBL

USA FIELD ARTILLERY

DEPTH & SMLTNUS ATTACK BATTLE LAB
FT SILL OK 73503-5600

COMMANDANT

ATTN ATSH CDA

DISMOUNTED BATTLESPACE BATTLE LAB
USIS

FT BENNING GA 31905-5400

COMMANDER

ATTN EARLY ENTRY BATTLE LAB
ATCD L

HQ TRADOC

FT MONROE VA 23651-5000

COMMANDER

ATIN ATZK MW

USARMC

MOUNTED BATTLESPACE BATTLE LAB
FT KNOX KY 40121-5000

DIRECTOR

ATTN ATRC WSR

US ARMY TRADOC ANALYSIS CMD
WSMR NM 88002-5502

30

NO. OF

COPIES ORGANIZATION

2

ARPA

ATTN ASTO

COL REDDY

3701 N FARFAX DR
ARLINGTON VA 22203-1714

DIRECTOR

ATTN AMSRL HR MT MR MATTHEWS
US ARMY RESEARCH LABORATORY
12350 RESEARCH PKWY

ORLANDO FL 32826-3276

UNIV OF CENTRAL FLORIDA

INST FOR SIMULATION & TRAINING
3280 PROGRESS DR

ORLANDO FL 32826

UNIVERSITY OF NEW MEXICO
UNIVERSITY HILL NORTHEAST
ALBUQUERQUE NM 87131

NAVAL POSTGRADUATE SCHOOL
ATTIN DAVID R PRATT PHD
COMPUTER SCIENCE DEPT
MONTEREY CA 93943-5100

LORAL FEDERAL SYSTEMS
ATTN JOSEPH BRANN
12461 RESEARCH PKWY
SUITE 400

ORLANDO FL 32826

THE MITRE CORPORATION
ATTN JOE LACETERA

145 WYKOFF RD
EATONTOWN NJ 07724-0000

CAE LINK

ATTN CHRISTINA BOUWENS
MS 604

PO BOX 1237

BINGHAMTON NY 13902-1237

LORAL WESTERN DEV LABS
ATTN DAVID GOBUTY

3200 ZANKER RD

MS X 38

SAN JOSE CA 95161-0000

NO. OF

COPIES ORGANIZATION

1

26

MERTEK INC

ATTN MICHAEL ROTHROCK
1395 ENTERPRISE OSTEEN RD
ENTERPRISE FL 32725-9404

SAIC

ATTN MARK HOPTIAK
10129 TURNBERRY PLACE
MS 282

OAKTON VA 22124

STRICOM

ATTN AMSTI TD RON HOFER
12350 RESEARCH PKWY
ORLANDO FL 32826-3276

COMMANDER

ATTN AMSRL HR MF LINDA PIERCE
ARL HRED

USAFAS

FT SILL OK 73503-5600

ABERDEEN PROVING GROUND

DIR USARL
ATIN: AMSRL-SC,
W MERMAGEN, SR
COL J BLAKE
R K LODER
AMSRL-SC-S, A MARK
AMSRL-SC-SS,
V A KASTE
J BOWEN
C E HANSEN
K T KIRK
R J PEARSON
T A PURNELL
M QIU
M A THOMAS
W ZHOU
AMSRL-SC-SM, K D FICKIE
AMSRL-SC-SA,
LTC J A WALL
MAJ M BIEGA
J FORESTER
E G HEILMAN
V LONG
JF O'MAY
AMSRL-SC-II, H A INGHAM

31

NO. OF

COPIES ORGANIZATION

AMSRL-WT-WE,
W P JOHNSON
G C SAUERBORN
JLACETERA
P HILL
AMSRL-HR-MF, R SPENCER

DIR USAMSAA

ATIN: AMSXY-CD,
W BROOKS
W HUGHES

CDR USACSTA

ATTN: STECS-AC-TFS,
A ETZEL
C LAMBERT
C MARTIN
MAJ M SMITH

CDR USATECOM

ATIN: AMSTE-CTM,
J CHEW
JKNOX

INTENTIONALLY LEFT BLANK.

32

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number _ARL-TR-780 Date of Report __June 1995

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the
report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating
costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to
organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and
the Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFCIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-SC-SS

ABERDEEN PROVING GROUND, MD 21005-5067

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

